Missing Data & How to Deal: An overview of missing data

Melissa Humphries Population Research Center

- Discuss ways to evaluate and understand missing data
- Discuss common missing data methods
- Know the advantages and disadvantages of common methods
- Review useful commands in Stata for missing data

General Steps for Analysis with Missing Data

- I. Identify patterns/reasons for missing and recode correctly
- 2. Understand distribution of missing data
- 3. Decide on best method of analysis

Step One: Understand your data

- Attrition due to social/natural processes
 - Example: School graduation, dropout, death
- Skip pattern in survey
 - Example: Certain questions only asked to respondents who indicate they are married
- Intentional missing as part of data collection process
- Random data collection issues
- Respondent refusal/Non-response

Find information from survey (codebook, questionnaire)

Identify skip patterns and/or sampling strategy from documentation

86A.	Have you ever worked for pay, not counting work around the house?
	(CIRCLE ONE)
	No
	Yes, and I am currently employed 2 (SKIP TO QUESTION 87)
	Yes, but I am not currently employed 3 (GO TO QUESTION 86B)
86B.	When did you last work for pay, not counting work around the house?
	(WRITE IN)
	19 19

. tab F2S86BYR			
YEAR, LAST TIME R WORKED	Freq.	Percent	Cum.
81	1	0.10	0.10
87	1	0.10	0.19
88	4	0.39	0.58
89	7	0.68	1.25
90	35	3.38	4.63
91	234	22.59	27.22
92	81	7.82	35.04
97: REFUSED	5	0.48	35.52
98: MISSING	19	1.83	37.36
99: LEGITIMATE SKIP/NOT IN WAVE	649	62.64	100.00
Total	1,036	100.00	

Year

Month

Recode for analysis: mvdecode command

. tak	worked,m		
HAS R EVER WORKED FOR PAY OUTSIDE HOME	Freq.	Percent	Cum.
	-		
1	160	13.41	13.41
2	488	40.91	54.32
3	383	32.10	86.42
7	1	0.08	86.50
8	8	0.67	87.18
· ·	153	12.82	100.00
Total	1,193	100.00	
. mvo	decode worked,	mv(78)	
	. 9 missing va		ted
. tak	worked,m		
	,		
HAS R EVER			
WORKED FOR			
PAY OUTSIDE			
HOME	Freq.	Percent	Cum.
1	160	13.41	13.41
2	488	40.91	54.32
3	383	32.10	86.42
	162	13.58	100.00
Total	1,193	100.00	

	_		
. tal	b worked,m		
HAS R EVER			
WORKED FOR			
PAY OUTSIDE			
HOME	Freq.	Percent	Cum.
1	160	13.41	13.41
2	488	40.91	54.32
3	383	32.10	86.42
7	1	0.08	86.50
8	8	0.67	87.18
	153	12.82	100.00
Total	1,193	100.00	
mvo	decode worked,	mv(78)	
worked	: 9 missing va	lues generat	ed
tal	b worked,m		
HAS R EVER			
WORKED FOR			
PAY OUTSIDE			
HOME	Freq.	Percent	Cum.
1	160	13.41	13.41
2	488	40.91	54.32
3	383	32.10	86.42
	162	13.58	100.00
Total	1,193	100.00	

Recode for analysis: mvdecode command

Note: Stata reads missing (.) as a value greater than any number.

. tab worked	if worked>2,m		
HAS R EVER WORKED FOR PAY OUTSIDE			
HOME	Freq.	Percent	Cum.
3	383	70.28	70.28
3	363	/0.20	/0.20
	162	29.72	100.00
Total	545	100.00	

Analyze missing data patterns: misstable command

. misstable sum						
					Obs<.	
Variable	Obs=.	Obs≻.	Obs<.	Unique values	Min	Max
SCH_ID	91		1,102	>500	1249	91991
BYS75	91		1,102	6	0	8
BYS81B	91		1,102	8	1	98
BY2XRIRR	91		1,102	>500	10.91	99.99
BY2XMIRR	91		1,102	>500	16.5	99.99
F1S74	92		1,101	4	1	8
F1S80AA	92		1,101	6	0	8
F1582	92		1,101	7	1	98

. misstable pattern, freq

Missing-value patterns

(1 means complete)

		P	att	er	ı				
	Frequency	1	2	3	4	5	6	7	8
	1 000	-							
	1,028	1	1	Ţ	1	1	1	1	T
	74	1	1	1	1	1	0	0	0
	73	0	0	0	0	0	1	1	1
	18	0	0	0	0	0	0	0	0
	1,193								
v	ariables are	. (1	.) E	3Y2X	MIRR	(2) E	3Y2X	RIRR

S74

F1S80AA

(8) F1S82

Step Two: Missing data Mechanism (or probability distribution of missingness)

- Consider the probability of missingness
 - Are certain groups more likely to have missing values?
 - Example: Respondents in service occupations less likely to report income
 - Are certain responses more likely to be missing?
 - Example: Respondents with high income less likely to report income
- Certain analysis methods assume a certain probability distribution

Missing Data Mechanisms

Missing Completely at Random (MCAR)

- Missing value (y) neither depends on x nor y
 - Example: some survey questions asked of a simple random sample of original sample
- Missing at Random (MAR)
 - Missing value (y) depends on x, but not y
 - Example: Respondents in service occupations less likely to report income
- Missing not at Random (NMAR)
 - The probability of a missing value depends on the variable that is missing
 - Example: Respondents with high income less likely to report income

Exploring missing data mechanisms

- Can't be 100% sure about probability of missing (since we don't actually know the missing values)
- Could test for MCAR (t-tests)—but not totally accurate
- Many missing data methods assume MCAR or MAR but our data often are MNAR
 - Some methods specifically for MNAR
 - Selection model (Heckman)
 - Pattern mixture models

Good News!!

- Some MAR analysis methods using MNAR data are still pretty good.
 - May be another measured variable that indirectly can predict the probability of missingness
 - Example: those with higher incomes are less likely to report income BUT we have a variable for years of education and/or number of investments
 - ML and MI are often unbiased with NMAR data even though assume data is MAR
 - See Schafer & Graham 2002

Step 3: Deal with missing data

- Use what you know about
 - Why data is missing
 - Distribution of missing data
- Decide on the best analysis strategy to yield the least biased estimates
 - Deletion Methods
 - Listwise deletion, pairwise deletion
 - Single Imputation Methods
 - Mean/mode substitution, dummy variable method, single regression
 - Model-Based Methods
 - Maximum Likelihood, Multiple imputation

Deletion Methods

- Listwise deletion
 - AKA complete case analysis
- Pairwise deletion

Listwise Deletion (Complete Case Analysis)

- Only analyze cases with available data on each variable
 - Advantages:
 - Simplicity
 - Comparability across analyses
 - Disadvantages:
 - Reduces statistical power (because lowers n)
 - Doesn't use all information
 - Estimates may be biased if data not MCAR*

Gender	8 th grade math test score	l 2 th grade math score
F	45	•
M	•	-99
F	55	86
F	85	88
F	80	75
•	81	82
F	75	80
M	95	•
Μ	86	90
F	70	75
F	85	•

*NOTE: List-wise deletion often produces *unbiased regression slope estimates* as long as missingness is not a function of outcome variable.

Application in Stata

Any analysis including multiple variables automatically applies listwise deletion.

. sum id BYS75	5 BY2XRIRR_1 H	22XMIRR			
Variable	Obs	Mean	Std. Dev.	Min	Max
id	1193	4596533	2612696	124932	9199152
BYS75	1089	1.221304	2.003138	0	8
BY2XRIRR_1	1043	27.02079	8.850781	10.83	43.83
F22XMIRR	1193	61.06244	26.49801	18.01	99.99
Mean estimatio			mber of obs		
	Mean	Std. Err.	[95% Conf.	Interval]	
id	4544590	81565.86	4384538	4704642	
BYS75	1.155321	.0590753	1.039401	1.271241	
BY2XRIRR_1	27.02079	.2740561	26.48302	27.55855	
F22XMIRR	60.31022	.7925299	58.75508	61.86536	

Pairwise deletion (Available Case Analysis)

- Analysis with all cases in which the variables of interest are present.
 - Advantage:
 - Keeps as many cases as possible for each analysis
 - Uses all information possible with each analysis
 - Disadvantage:
 - Can't compare analyses because sample different each time

Gender	8 th grade math test score	l 2 th grade math score
F	45	•
Μ	•	99
F	55	86
F	85	88
F	80	75
	81	82
F	75	80
М	95	•
М	86	90
F	70	75
F	85	•

Single imputation methods

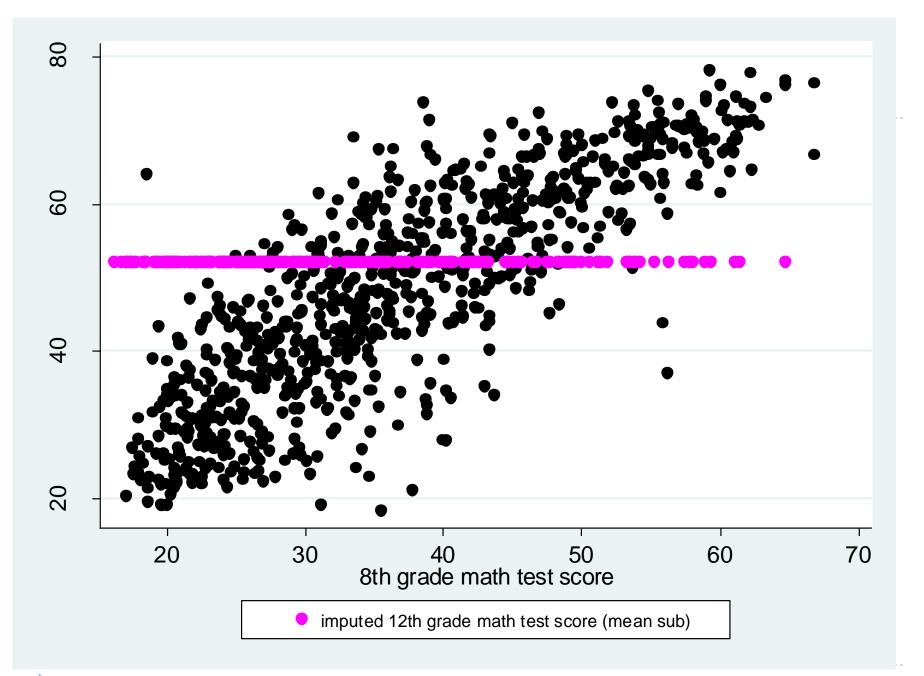
- Mean/Mode substitution
- Dummy variable control
- Conditional mean substitution

Mean/Mode Substitution

- Replace missing value with sample mean or mode
- Run analyses as if all complete cases
- Advantages:
 - Can use complete case analysis methods

Disadvantages:

- Reduces variability
- Weakens covariance and correlation estimates in the data (because ignores relationship between variables)



Dummy variable adjustment

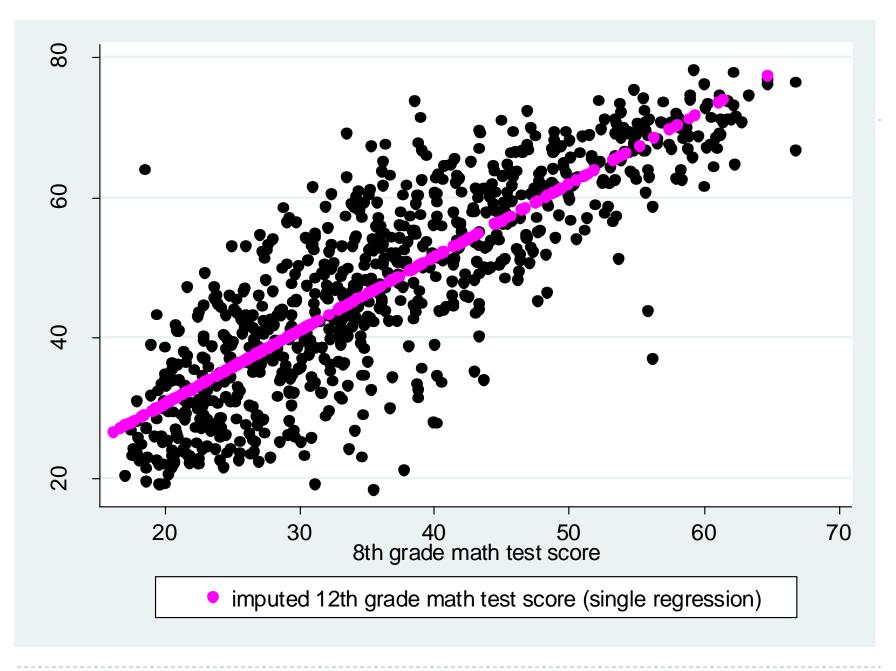
- Create an indicator for missing value (I=value is missing for observation; 0=value is observed for observation)
- Impute missing values to a constant (such as the mean)
- Include missing indicator in regression
- Advantage:
 - Uses all available information about missing observation

Disadvantage:

- Results in biased estimates
- Not theoretically driven
- NOTE: Results not biased if value is missing because of a legitimate skip

Regression Imputation

- Replaces missing values with predicted score from a regression equation.
 - Advantage:
 - Uses information from observed data
 - Disadvantages:
 - Overestimates model fit and correlation estimates
 - Weakens variance



Model-based methods

- Maximum Likelihood
- Multiple imputation

D

Model-based Methods: Maximum Likelihood Estimation

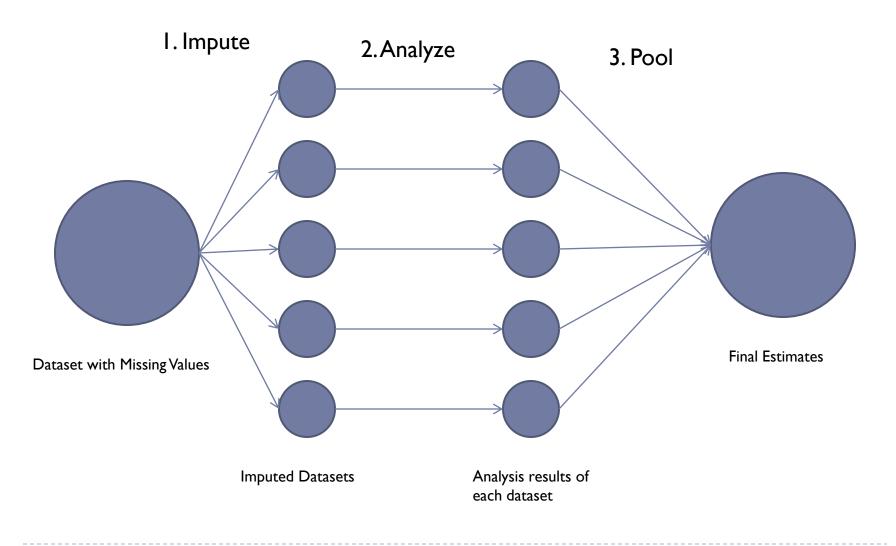
- Identifies the set of parameter values that produces the highest log-likelihood.
 - ML estimate: value that is most likely to have resulted in the observed data
- Conceptually, process the same with or without missing data
 - Advantages:
 - Uses full information (both complete cases and incomplete cases) to calculate log likelihood
 - Unbiased parameter estimates with MCAR/MAR data
 - Disadvantages
 - SEs biased downward—can be adjusted by using observed information matrix

Multiple Imputation

- I. Impute: Data is 'filled in' with imputed values using specified regression model
 - This step is repeated *m* times, resulting in a separate dataset each time.
- 2.Analyze: Analyses performed within each dataset
- 3. Pool: Results pooled into one estimate
 - Advantages:
 - Variability more accurate with multiple imputations for each missing value
 - □ Considers variability due to sampling AND variability due to imputation
 - Disadvantages:

- Cumbersome coding
- Room for error when specifying models

Multiple Imputation Process



Multiple Imputation: Stata & SAS

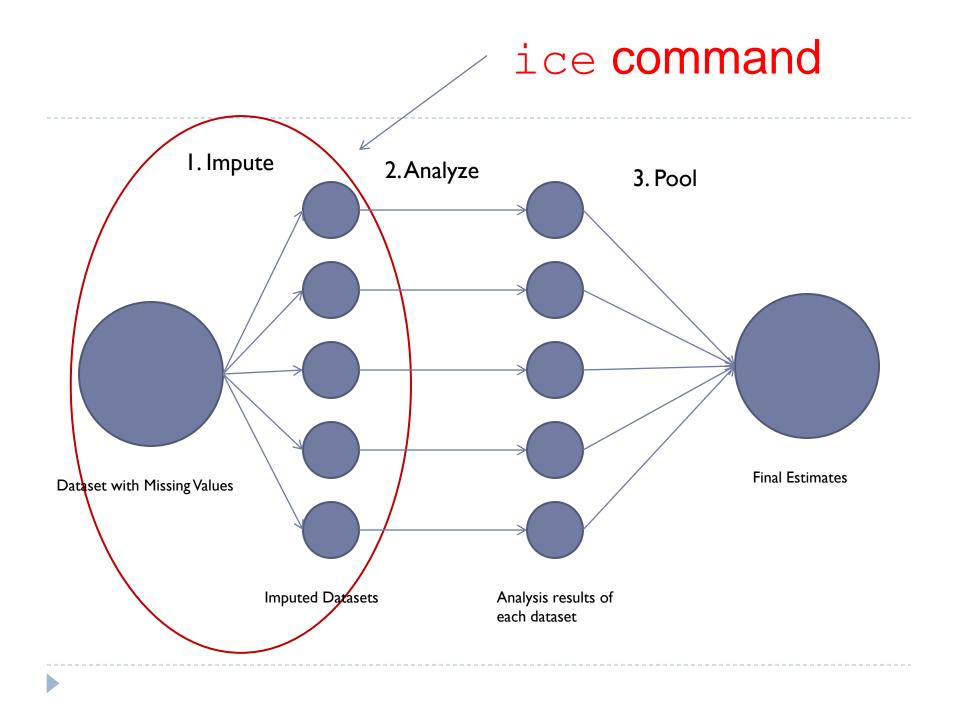
- SAS:
 - Proc mi
- Stata:

D

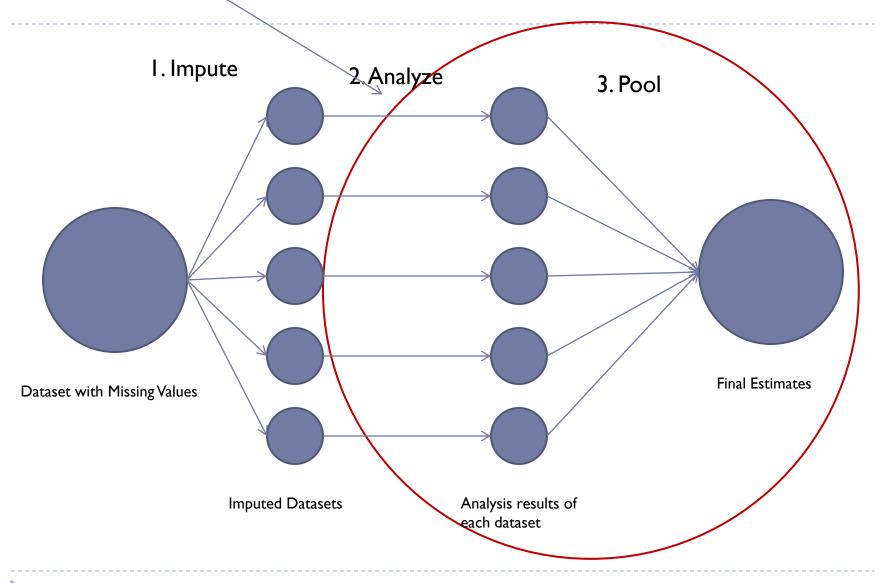
- ice (imputation using chained equations) & mim (analysis with multiply imputed dataset)
- mi commands
 - mi set
 - mi register
 - mi impute
 - mi estimate
- NOTE: the ice command is the only chained equation method until Stata I 2. Chained equations can be used as an option of mi impute since Stata I 2.

ice & mim

- ice: Imputation using chained equations
 - Series of equations predicting one variable at a time
 - Creates as many datasets as desired
- mim: prefix used before analysis that performs analyses across datasets and pools estimates



mim command



ice female lm latino black asian other F1PARED AGE1 intact bymirt ESL2 ALG2OH acgpa ac_engall hardwtr Lksch MAE10 RAE10 hilep midw south public catholic colltype aceng_ESL Lksch_ESL, /// saving(imputed2) m(5) cmd (Lksch:ologit)

Variable	Command	Prediction equation
female	+	[No missing data in estimation sample]
lm	1	[No missing data in estimation sample]
latino	l	[No missing data in estimation sample]
black		[No missing data in estimation sample]
ALG2OH		female lm latino black asian other F1PARED AGE1 intact bymirt ESL2 acgpa ac_engall hardwtr Lksch MAE10 RAE10 hilep midw south public catholic colltype aceng_ESL Lksch ESL
acgpa	regress	female lm latino black asian other F1PARED AGE1 intact
	 	bymirt ESL2 ALG2OH ac_engall hardwtr Lksch MAE10 RAE10 hilep midw south public catholic colltype aceng_ESL Lksch ESL
ac engall	regress	female lm latino black asian other F1PARED AGE1 intact
	1	bymirt ESL2 ALG2OH acgpa hardwtr Lksch MAE10 RAE10
	I	hilep midw south public catholic colltype Lksch ESL
hardwtr	logit	female lm latino black asian other F1PARED AGE1 intact
	l	bymirt ESL2 ALG2OH acgpa ac_engall Lksch MAE10 RAE10
		hilep midw south public catholic colltype aceng_ESL
		Lksch_ESL
Lksch	ologit	female lm latino black asian other F1PARED AGE1 intact
		bymirt ESL2 ALG2OH acgpa ac_engall hardwtr MAE10 RAE10
		hilep midw south public catholic colltype aceng_ESL
MAE10	regress	female lm latino black asian other F1PARED AGE1 intact
		bymirt ESL2 ALG2OH acgpa ac_engall hardwtr Lksch RAE10
		hilep midw south public catholic colltype aceng_ESL
		Lksch_ESL
RAE10		female lm latino black asian other F1PARED AGE1 intact
		bymirt ESL2 ALG2OH acgpa ac_engall hardwtr Lksch MAE10
		hilep midw south public catholic colltype aceng_ESL
		Lksch_ESL
hilep		female lm latino black asian other F1PARED AGE1 intact
	1	bymirt ESL2 ALG2OH acgpa ac_engall hardwtr Lksch MAE10
	1	RAE10 midw south public catholic colltype aceng_ESL
	1	Lksch_ESL

file imputed2.dta saved

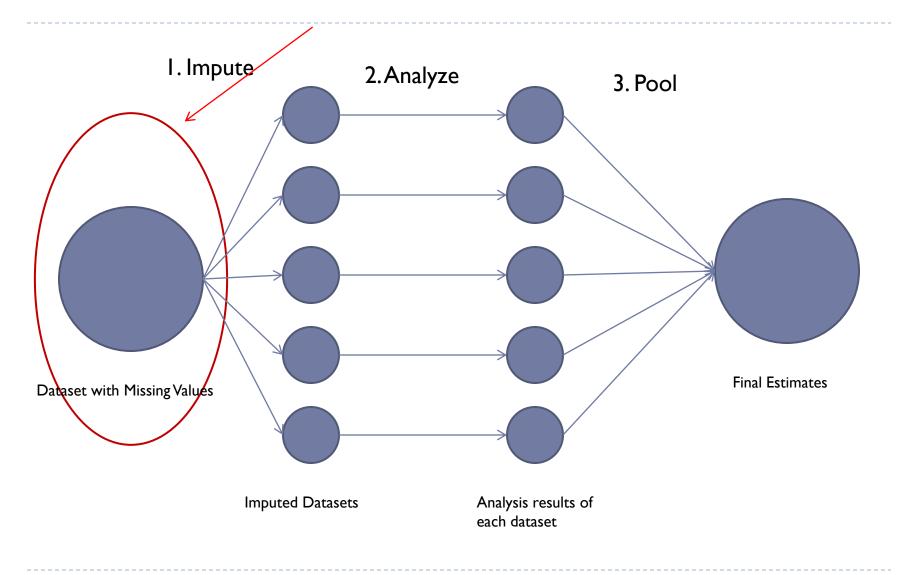
mim, storebv: svy: mlogit colltype ESL2 lm female latino black asian other F1PARED lowinc AGE1 intact bymirt ALG2OH acgpa Lksch, b(0)

Multiple-imput					Imputations =	5
Survey: Multin	nomial logis	stic regres	sion		Minimum obs =	13394
					Minimum dof =	511.9
						 DMT
colltype	Coei.	Sta. Err.	t	P> t	[95% Conf. Int.]	FMI
1						
1	275620	170004	0 1 0	0 000	712266 027000	0 000
ESL2		.172034	-2.18	0.029	713366037909	0.000
lm		.132112	3.40	0.001	.189561 .708272	0.000
female		.073912	3.29	0.001	.098427 .388628	0.000
latino		.12592	0.05	0.964	241452 .252948	0.000
black		.120774	1.10	0.270	103895 .3703	0.001
asian	.342303	.172157	1.99	0.047	.004332 .680273	0.000
other	432693	.165435	-2.62	0.009	75746710792	0.000
F1PARED	.170113	.033034	5.15	0.000	.105262 .234964	0.000
lowinc	256572	.104118	-2.46	0.014	460972052171	0.000
AGE1		.086344	-4.71	0.000	576146237134	0.000
intact		.069599	2.55	0.011	.040768 .314034	0.000
bymirt		.003725	3.37	0.001	.005238 .019861	0.001
ALG2OH		.081618	5.92	0.000	.322823 .643285	0.003
	.498286	.057879	8.61	0.000	.384662 .611911	0.001
Lksch		.059965	1.13	0.257	049733 .185848	0.043
	-2.31716	.218751		0.000	-2.74661 -1.8877	0.009
+						
2						
ESL2	845765	.274438	-3.08	0.002	-1.38453307001	0.000
loiz lm		.148886	1.33	0.185	094659 .489916	0.001
female		.085302	1.77	0.077	016534 .318389	0.000
latino		.150431	-0.28	0.781	337251 .253386	0.000
black		.13483	7.47	0.000	.742115 1.2715	0.002
asian		.13403	3.00			0.002
				0.003		
other		.189309	0.49	0.625	279183 .464103	0.000
F1PARED		.03378	13.44	0.000	.387781 .520411	0.001
lowinc		.119948	-3.16	0.002	614563143608	0.000
AGE1		.089359	-4.42	0.000	570382219531	0.001
intact		.083677	3.34	0.001	.11533 .443873	0.000
bymirt	.048036	.004558	10.54	0.000	.039089 .056984	0.001
ALG2OH	1.49035	.116042	12.84	0.000	1.26254 1.71816	0.004
acgpa	1.51343	.07672	19.73	0.000	1.36282 1.66404	0.001
Lksch	.236965	.070135	3.38	0.001	.099176 .374754	0.048
cons	-7.84432	.292087	-26.86	0.000	-8.41775 -7.27089	0.008

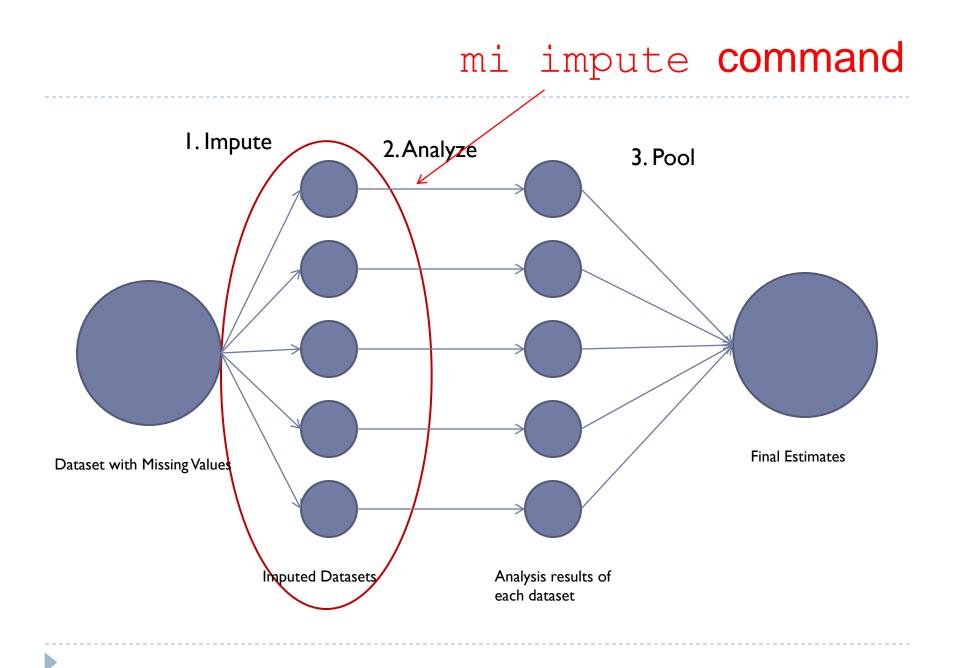
mi commands

- Included in Stata 11
- Includes univariate multiple imputation (impute only one variable)
- Multivariate imputation probably more useful for our data
- Specific order:
 - mi set
 - mi register
 - mi impute
 - mi estimate

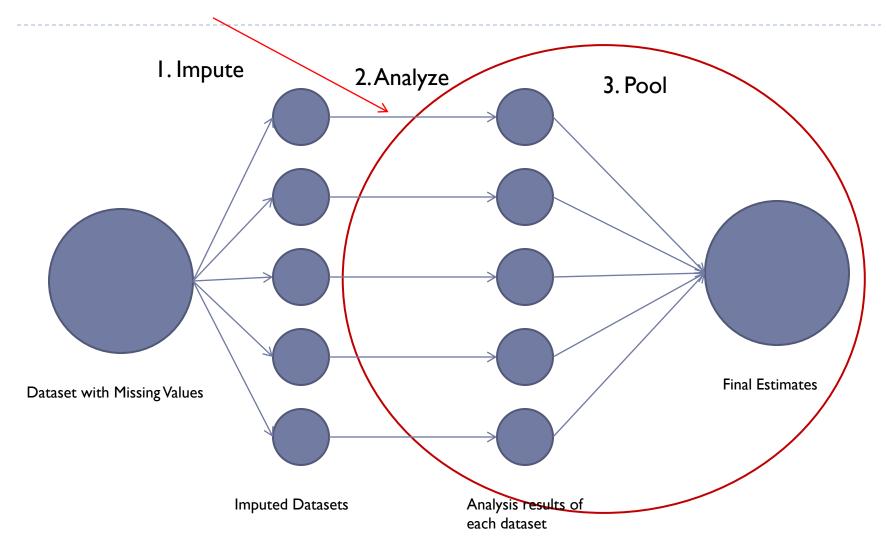
mi set and mi register commands



D



mi estimate command



```
******set data to be multiply imputed (can set to 'wide' format also) mi set flong
```

```
*****register variables as "imputed" (variables with missing data that you want imputed)
or "regular"
mi register imputed readtest8 worked mathtest8
mi register regular sex race
```

******describing data mi describe

```
*****setting seed so results are replicable
set seed 8945
```

******imputing using chained equations—using ols regression for predicting read and math
test using mlogit to predict worked
mi impute chained (regress) readtest8 mathtest8 (mlogit) worked=sex i.race, add(10)

*******check new imputed dataset mi describe

```
******estimating model using imputed values
mi estimate:regress mathtest12 mathtest8 sex race
```

```
*set data to be multiply imputed
 mi set flong
. mi svyset
no survey characteristics are set.
. *register variables as "imputed" (variables with missing data that you want imputed)
mi register imputed readtest8 worked mathtest8
(165 m=0 obs. now marked as incomplete)
mi register regular sex race
 mi describe
 Style: flong
        last mi update 29mar2012 10:36:55, 0 seconds ago
 Obs.: complete
                   955
        incomplete 165 (M = 0 imputations)
                       1,120
         total
 Vars.: imputed: 3; readtest8(40) worked(132) mathtest8(41)
        passive: 0
         regular: 2; sex race
        system: 3; mim miid mimiss
        (there are 20 unregistered variables)
```

D

```
******setting seed so results are replicable
 set seed 8945
 ******imputing using chained equations
 mi impute chained (regress) readtest8 mathtest8 (mlogit) worked=sex i.race, add(10)
Conditional models:
        readtest8: regress readtest8 mathtest8 i.worked sex i.race
        mathtest8: regress mathtest8 readtest8 i.worked sex i.race
           worked: mlogit worked readtest8 mathtest8 sex i.race
Performing chained iterations ...
Multivariate imputation
                                          Imputations =
                                                             10
Chained equations
                                               added =
                                                             10
Imputed: m=1 through m=10
                                             updated = 0
Initialization: monotone
                                           Iterations = 100
                                              burn-in = 10
        readtest8: linear regression
        mathtest8: linear regression
           worked: multinomial logistic regression
```

	Observations per m						
Variable	Complete	Incomplete	Imputed	Total			
readtest8 mathtest8 worked	1060 1060 958	37 37 139	37 37 139	1097 1097 1097			

(complete + incomplete = total; imputed is the minimum across m of the number of filled-in observations.)

Dataset after imputation

D

. sum readtest	:8				
Variable	Obs	Mean	Std. Dev.	Min	Max
readtest8	12030	27.02419	8.862721	-4.311928	52.88457

. ******estimating model using imputed values

. mi estimate:regress mathtest12 mathtest8 sex race

Multiple-imput	ation estimat	es		Imput	ations	=	10
Linear regress	ion			Numbe	r of obs	=	830
				Avera	ige RVI	=	0.1070
				Large	st FMI	=	0.2241
				Compl	ete DF	=	826
DF adjustment:	Small samp	ple		DF:	min	=	148.93
					avg	=	410.45
					max	=	704.25
Model F test:	Equal H	MI		F (3, 515.9) =	525.22
Within VCE typ	e: C	DLS		Prob	> F	=	0.0000
mathtest12	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
mathtest8	1.022907	.0276674	36.97	0.000	.9682	36	1.077579
sex	-2.05258	.5941458	-3.45	0.001	-3.2190	89	8860704
race	015127	.3232535	-0.05	0.963	65015	39	.6198999
_cons	13.78052	1.717096	8.03	0.000	10.399	51	17.16154

Notes and help with mi in stata

- LOTS of options
 - Can specify exactly how you want imputed
 - Can specify the model appropriately (ex. Using svy command)
 - mi impute mvn (multivariate normal regression) also useful
- Help mi is useful
- Also, UCLA has great website about ice and mi

General Tips

- Try a few methods: often if result in similar estimates, can put as a footnote to support method
- Some don't impute dependent variable
 - But would still use to impute independent variables

References

- Allison, Paul D. 2001. <u>Missing Data.</u> Sage University Papers Series on Quantitative Applications in the Social Sciences. Thousand Oaks: Sage.
- Enders, Craig. 2010. <u>Applied Missing Data Analysis</u>. Guilford Press: New York.
- Little, Roderick J., Donald Rubin. 2002. <u>Statistical Analysis</u> with Missing Data. John Wiley & Sons, Inc: Hoboken.
- Schafer, Joseph L., John W. Graham. 2002. "Missing Data: Our View of the State of the Art." Psychological Methods.